Using LangChain
The simplest way is to directly set environment variables as shown below
Download Address:https://www.langchain.com/
API_SECRET_KEY = "sk-pvMtoVO******66249058b93C766F2D70167"
BASE_URL = "https://aihubmix.com/v1"; #Base URL for aihubmix
os.environ["OPENAI_API_KEY"] = API_SECRET_KEY
os.environ["OPENAI_BASE_URL"] = BASE_URL
Note: Ensure to add /v1 at the end of openai_api_base,
llm = ChatOpenAI(
openai_api_base="https://aihubmix.com/v1", # Note, add /v1 at the end
openai_api_key="sk-3133f******fee269b71d",
)
res = llm.predict("hello")
print(res)
Example code for using LLM to make predictions
The core is actually in setting the key and URL
Methods include:
- Setting using environment variables
- Passing in variables
- Manually setting environment variables
import requests
import time
import json
import time
from langchain.llms import OpenAI
API_SECRET_KEY = "your key from aihubmix";
BASE_URL = "https://aihubmix.com/v1"; #Base URL for aihubmix
os.environ["OPENAI_API_KEY"] = API_SECRET_KEY
os.environ["OPENAI_API_BASE"] = BASE_URL
def text():
llm = OpenAI(temperature=0.9)
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))
if __name__ == '__main__':
text();
After running, you can see the return:
Lively Socks.